


## Building Statistics

- Multi-purpose Dormitory
- 185,000 gSF
- 7 Stories Above Ground/ 1 Underground
- Gravity System: Two Way Concrete Slabs w/ Concrete Columns
- Lateral: Ordinary Concrete Shear Walls


## Project Team

- Architects: WDG Architecture
- Contractor: Clark Construction
- Civil Engineers: Site Resources Inc.
- Structural Engineers: Cagley \& Associates

CAGLEY\&ASSOCIATES

Prince Frederick Hall Introduction

=Elevators

解 站 $(i=$


| Design a brand new Luxury Family Resort: <br> With on site Entertainment <br> Luxury Accommodations | 1. Pick New Site |
| :--- | :--- |

## Hotel Information

Indoor Water Park Information

- Hotel Size: $185,000 \mathrm{gSF}$
- Stories: 7 stories, 1 underground
- 234 Guest Rooms
- Arcade
- Bar/Night Club

- Indoor Water Park: 45,000 gSF
- Stories: 4 stories tall
- Over 10 Water Slides and Attractions
- Large 120,000 Gallon Wave pool
- Thrilling Speed Slides


## 

##  Arundel Mills Circland Hanover, Maryland



Site Amenities

- Awesome Shopping
- Diverse Dinning
- Entertainment
- Casino Gambling
- Prime Location

Arch Floor Plan: SCUB LEVEL


Arch Floor Plan: First Floor Plan


Arch Floor Plan: Floors 2-7

$\uparrow_{\mathrm{N}}$

Arch Floor Plan: Indoor Water Park
Children's Slide and Pool




Blue Lagoon Wave Pool



Free-FALL (Speed Slide)


Loading Combinations:
Designed with ASTM F2376-06 Loading Combinations
Normal Building Codes Generally Do Not Apply
Dead Load+ Rider Load + Water Load
Wind Load Does Not Control (X1.4 Section 6)

- Assume Worst Case Scenario

Loading Combinations Two Riders Same Location One Rider Left One Rider Right No Water Left/ Rider Right Rider Left / No Water Right


Structural Design: Family Raft and Tube Slides


Structural Design: Family Raft and Tube Slides
Too Heavy for previous column design Designed a No-Sway Frame


- W8x31 designed as tension members/ checked for compression
- WS Structure Applies a 1.4 K load to tie back


Roof Conditions:
Expansion Joint: Sized off of Max Deflections of both structures the $5^{\text {th }}$ floor.
2.5" Roof to Wall System

Structural Design: Water Park
Gravity System


Skylights:


Loading Conditions:

Metal Decking- 2psf
Rigid Insulation- 2 pst
Built Up Roof- 20psf
HVAC/ MISC -12psf
Skylights- 6psf
Ordinary flat roof live - 20 psf Snow Flat Projection- 22 psf

Joist Design：
Economy K－Series Tables Were
Used
50 Foot Spans
－Trib Width 5 Feet
No Depth Constraints


Structural Design：Water Park Gravity System


## Designned By:

- Depth of beam (Guess and Check)



## $L / D=10$ to 12

- Checked for a Slender Web
- Checked for Shear Strength
- Weld Shear Flow was compared to shear yielding and shear rupture.

Structural Design: Water Park
Gravity System



Structural Design: Water Park

Gravity System


Structural Design：Water Park Gravity System

－Two Wide Flange Columns Detailed
－Fabricated Before Installation
－Mimic HSS
Minimize Mold Growth

Frame 1


Frame 2 and 4


Structural Design: Water Park
Lateral System


Frame 3


Frame 5


## Structural Design: Water Park

Original Frame 5:


Lateral System

- Low Stiffness
- High Deflection
- Problem Members: Unbraced Portion of Columns


Wind lood


## Freme Deflection Due to Wind Loeding ceses:

| Loading Case | Frame With <br> Largest Deflection | Max $\Delta(\mathrm{ln})$ | Max Allowable <br> $\Delta(\mathrm{H} / 400)$ | Pass? |
| :--- | :--- | :--- | :--- | :--- |
| Case 1 | Frame 5 | 0.70 | 1.53 | Yes |
| Case 2 | Frame 2 | 1.51 | 1.53 | Yes |
| Case 3 | Frame 5 | 0.4 | 1.53 | Yes |
| Case 4 | Frame 5 | 1.01 | 1.53 | Yes |

Structural Design: Water Park Lateral System


Seismic Loading Asce 7•10


Frame Deflection Due to Seismic Loadingi


New Gravity Live Loads

| Occupancy | Live Load（psi） | Partition（psi） | Total | Load（psf） |
| :--- | :--- | :--- | :--- | :--- |
| Arcade | 75 | 10 | 85 | Reducible？ |
| Bar | 100 | 10 | 110 | Yes |
| Bathroom | 100 | 0 | 100 | Yes |
| Corridor | 100 | 0 | 100 | No |
| Corridor（Above 15t Floor） | 70 | 0 | 70 | No |
| Hotel Room | 40 | 0 | 40 | Yes |
| Hospital | 40 | 10 | 50 | Yes |
| Lobby－Assembly Room | 100 | 0 | 100 | Yes |
| Mechanical Space | 150 | 0 | 150 | No |
| Office | 50 | 10 | 60 | Yes |
| Retail | 100 | 10 | 110 | Yes |
| Roof | 20 | 0 | 20 | No |

Structural Design：Hotel
Gravity System


Composite Decking Instead of 2－Way Concrete Slabs ：
－Superimposed Loading：100psf
－ 9 Foot Spans
－Normal Weight Concrete
－No－Shoring Needed
－Spray on Fireproofing Required
Designed Decking：Vulcraft 1．5VLR 20

Structural Design: Hotel
Gravity System


FIRST FLOOR COLUMN LOCATION


2-7 $7^{\text {TH }}$ FLOOR COLUMN LOCATION


Structural Design: Hotel Gravity System


Architectural Design
Structural Design Water Park

Structural Design: Hotel

## Gravity System

Column D1
Column D2


Structural Design: Hotel
Lateral System


Structural Ram Model

Controlling Wind Load Deflections: \begin{tabular}{|c|c|}
\hline Case 3: Wind Loading 0.75Y+Moment <br>
\hline Level \& Max Deflection (Inches) <br>
\hline

 

\hline Level \& Max Deflection (Inches) <br>
\hline Roof \& 1.728964 <br>
\hline 7463152 <br>
\hline
\end{tabular}



Seismic Loading Deflections:


Structural Design: Anotel
k

- Higher Loading Conditions: Updated Code
Lateral System:
Shear Wall Information:
- 7 Ordinary Concrete Shear Walls
- 12 " Thick
- Similar Design to Prince Frederick Hall
Change to Original Shear Walls:
- Shear Wall \#2 was moved- Architectural Floor Plans

Problem Statement Introduction Blackbeard's

## Conclusion

- A Exciting New Family Resort Was Created
- Architectural Design of Floor Plans Were Created
- Dynamic Loading Was Explored
- Water Slide Structure Was Designed
- Large Spanning Members were Designed For the Water Park
- Lateral Frames Were Designed
- Hotel Gravity and Lateral Were Explored



# Acknowledgements 

Entire AE Faculty
Professor Heather Sustersic
Dr. Thomas Boothby
Dr. Linda Hanagan
Professor Kevin Parfitt
Fellow AE Friends

Friends and Family



QUESTIONS?

New Building Elevetions: $\mathbb{N o u t h}$


APPENDIX

New Building Elevations: Eest


APPENDIX

కఁonony Joist Table:


## Watip Park frame stifiness:

| Designation | Deflection (inch) <br> \{Dummy Load\} | Stiffness K <br> (K/in) |
| :--- | :--- | :--- |
| Frame 1 | 0.039 | 25.60 |
| Frame 2 | 0.021 | 47.60 |
| Frame 3 | 0.024 | 41.67 |
| Frame 4 | 0.021 | 47.60 |
| Frame 5 | 0.007 | 142.80 |

Water Parl Center of Rigidity ：


APPENDIX

Water Park Wind Loading

| Wind Loading North. South Water Park |  |  |  |  |  |  |  |  |  |  | Wind loding East to west |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| veight | ${ }^{28}$ | ${ }^{\alpha}$ | k | kt | ${ }^{\text {kd }}$ | , | ${ }^{4}$ |  |  |  | Height | ${ }^{28}$ | a | K2 | ktt | kd | $v$ | q2 |  |  |  |
| 5 | 1200 <br> 1200 | 7 | ${ }^{0.55472}$ | 1 | ${ }^{0.85}$ | 115 | 16.5391 |  |  |  | ${ }_{5}$ | ${ }_{1200}^{28}$ | 7 | 0.5472 | 1 | 0.85 | 115 | 16.5391 |  |  |  |
| 10 | ${ }_{1200}^{1200}$ | 7 | ${ }_{0}^{0.547472}$ | 1 | 0.85 0.85 | 115 115 | ${ }_{1}^{1655391}$ |  |  |  | 10 | ${ }^{1220}$ | 7 | 0.57472 | 1 | - 0.85 |  | ${ }_{165391}^{16591}$ |  |  |  |
| ${ }^{20}$ | 1200 | 7 | ${ }^{0.623954}$ | 1 | -0.85 | 115 | ${ }^{179559}$ |  |  |  | 15 20 | ${ }_{1200}^{1200}$ | 7 | ${ }^{0.562959}$ | 1 | (0.85 | 115 115 | ${ }^{165391} 1$ |  |  |  |
| 25 30 | ${ }_{1200}^{1200}$ | 7 | ${ }^{0.655039}$ | 1 | O. 0.85 | 115 115 | ${ }^{19.1988}$ |  |  |  | ${ }^{25}$ | 1200 | 7 | 0.65503 | 1 | 0.85 | 115 | ${ }^{19.138}$ |  |  |  |
| ${ }_{35}$ | 1200 | 7 | 0.73237 | 1 | 0.85 | 115 | 21.069 |  |  |  | $\begin{array}{r}30 \\ 35 \\ \hline\end{array}$ | 1200 <br> 1200 <br> 1 | 7 | ${ }^{0.7035931}$ | 1 | (0.85 | 115 | ${ }_{20}^{20.1031}$ |  |  |  |
| ${ }_{45}^{40}$ | 1200 | 7 | ${ }_{0}^{0.7686899}$ | 1 | (0.85 | 115 | ${ }_{2218885}^{21.85}$ |  |  |  | ${ }_{40}$ | 1200 | 7 | ${ }^{0.7666099}$ | 1 | 0.85 | 115 | 21.8885 |  |  |  |
| 㖪 | 1200 | 7 | 0.810881 | 1 | 0.85 | 115 |  |  |  |  | 45 50 | (1200 | 7 | ${ }^{0.7866411}$ | 1 | O.85 | 115 | ${ }_{223}^{22.3765}$ |  |  |  |
| 51 | 1200 | 7 | 0.815881 | 1 | 0.85 | 115 | ${ }^{23,4618}$ |  |  |  | 50 51 | ${ }_{1200}^{1200}$ | 7 | ${ }_{0}^{0.8108681}$ | 1 | 0.85 | 115 115 | ${ }_{\text {23, }}^{23,395}$ |  |  |  |
| Height | ${ }^{\text {a }}$ | 6 | h/ | ${ }^{\text {cp}}$ | Coi | P |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{r}5 \\ 10 \\ \hline\end{array}$ |  | ${ }_{12}^{1.2}$ | -0.34 | -0.8 | 0.18 0.18 | 12.900611 <br> $120 \times 0651$ |  |  |  |  | Height | az | ¢ | h/h | $\mathrm{cp}_{p}$ | cpi | $p$ |  |  |  |  |
| ${ }^{15}$ | 16.53805277 | 1.2 | 0.34 | 0.8 | 0.18 | ${ }^{123009661}$ |  |  |  |  | 5 |  | ${ }_{1}^{1}$ | ${ }_{0}^{0.34} 0$ | 0.8 0.8 | 0.0 .18 | ${ }^{10.229213} 10.25213$ |  |  |  |  |
| ${ }_{25}^{20}$ | ${ }_{\text {l }}^{17.95959979} 1$ | ${ }_{12}^{1.2}$ | ${ }_{0}^{0.34}$ | 0.8 0.8 | 0.18 0.18 | 14.00561 1927212 |  |  |  |  | ${ }^{15}$ | 16.5350527 | 1 | 0.34 | 0.8 | 0.18 | 10.259213 |  |  |  |  |
| ${ }^{30}$ | 20.1613315 | 1.2 | 0.34 | 0.8 | 0.18 | 15.725838 | Roof Pre |  |  |  | ${ }_{25}^{20}$ | 117.595979 | 1 | ${ }_{0}^{0.34}$ | 0.8 0.8 | 0.18 0.18 | l11132644 |  |  |  |  |
| 35 40 | 21.0991434 | 12 | - 034 | 0.8 | 0.18 | ${ }_{\text {l }}^{116.433331}$ | 0.h/2 | 0.25 .5 |  |  | 30 | 20.1633315 | 1 | 0.34 | 0.8 | 0.18 | ${ }_{11250025}$ |  |  |  |  |
| 40 | ${ }_{\substack{2128839832 \\ 218}}^{212}$ | ${ }_{12}^{1.2}$ | ${ }_{0}^{0.34}$ | 0.8 0.8 | 0.18 | - 117.73737293 | h/2.h | 25.551 |  |  | 35 | 21.0691234 | 1 | 0.34 | 0.8 | 0.18 | 13.023888 | Roof Pres |  |  |  |
| 50 | 23.3294531 | 12 | 0.34 | 0.8 | 0.18 | ${ }_{\text {18, } 18.19974}$ |  | ${ }^{51-102}$ |  |  | 40 45 | ${ }_{2128889992}$ | 1 | -0.34 | 0.8 | 0.18 | - 13.57887 | ${ }_{\text {a }}^{0.0 / 2 / 2 .}$ | ${ }_{\text {25.5.51 }}^{0.25 .5}$ | ${ }_{0}^{0.9}$ | 13.05 13.05 |
|  | 23.46182889 | 1.2 |  | 0.8 | 0.18 | 18.3022 |  |  |  |  | ${ }_{5}$ | ${ }_{23}^{22332953521}$ | 1 | - ${ }_{0}^{0.34}$ | ${ }^{0.8}$ | 0.18 | 14.462621 | h-2h | ${ }_{51-102}$ | 0.5 | ${ }^{7} .25$ |
|  |  |  |  |  |  |  |  |  |  |  | 51 | 23,4618289 |  | 0.34 | 0.8 | 0.18 | 14.56633 | >2h | 102300 | 0.3 |  |

APPENDIX

Water Park Seismic Loadling


APPENDIX

Hotel structure Floor Plans: pirst Floor



Mofel Structure Floor Plans：Roof


ETABS Model Check ond cora


Center of Rigidity：Hand Calculations vs．ETABS

| Center of Rigidity：Hand Calculations vs．ETABS |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | Hand Calculations | ETABS Calculation |  |  |
|  | X | Y | X | Y |
| Ground Floor | 168.4 | 81.0 | 164.8 | 73.2 |
| First Floor | 175.5 | 88.0 | 150.0 | 70.0 |
| Second Floor | 168.4 | 81.0 | 138.7 | 68.0 |
| Third to <br> Seventh Floor | 177.5 | 112.2 | 120.0 | 70.0 |
| Roof | 175.8 | 88.4 | 130.0 | 70.0 |

Hotel Wind Loading

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Heishntitit | ${ }_{\text {glti }}^{160}$ | ${ }^{\text {cti }} 3$ | ${ }_{\text {m mb }} 115$ | 0.8 | 1 | ${ }_{0} .85$ | ${ }^{6 \text { cqi }} 0.18$ |  |  | 1795 | 08 | ${ }^{\text {Puw }} 8$ | ${ }_{15}^{1 / 2586}$ | ${ }_{24}$ | ${ }_{\text {ribwath }}^{150}$ |  |  |
| 19 | 160 |  | 115 | 0.85 |  | 0.85 |  |  | 0.90 .6675 |  |  |  |  |  | 160 |  |  |
| ${ }^{30}$ | ${ }^{160}$ | 320 | ${ }^{115}$ | 0.85 | 1 | 0.85 | 0. 0.18 | 0.98 | ${ }^{0.988} 0.766008$ | 218885 | 0.8 | 0.8 10.94425 |  | 62202025 | ${ }^{160}$ |  |  |
| ${ }_{-}{ }^{40}$ | ${ }^{160}$ | 320 | 115 | 0.85 | 1 | 0.85 | 0.18 |  | 1040882578 | 23768383 |  | 0.8 11.81888 |  | 627.19011 | 180 |  |  |
| ${ }^{51}$ | 160 | 320 | 115 | 0.85 | 1 | 0.85 | 0.18 |  | 1090.885124 | 25.47774 |  | 0.812 .7388 | 15.586 | 627.947 | 160 |  | $47.7782^{2}$ |
| 62 | 160 | 320 | 115 | 0.85 | 1 | 0.85 | 0.18 |  | 1.130 .9592 | 269335 |  | 0.81 .3 .4667 | 15.586 | 628.7536 | 160 |  | 488782 |
| ${ }^{2}$ | 160 | 320 | 115 | 0.85 | 1 | 0.85 | 0.18 |  | 1170.97872 | 28.1095 |  | 0.814 .05458 | 15.586 | 2 2,31318 | 160 |  |  |
| ${ }_{85}^{85}$ | ${ }^{160}$ | 320 | 115 | 0.85 | 1 | ${ }_{0}^{0.85}$ | 5 0.18 |  | ${ }^{124} 1.202211$ | 29,97333 |  | 0.81 .4 .7376 | ${ }^{15.2586}$ | 629.9576 | 160 |  |  |
| 96 | 160 | 320 | 115 | 0.85 | 1 | 0.85 | $55^{0.18}$ |  | 1.261 .064493 | 30.51799 |  | 0.81515288 | 15.5886 | 6 30.5172 | 160 |  | 268513 |
| Wind loading botel Nort.50uth |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $)^{15}$ | ${ }_{3}^{320}$ | ${ }_{160}^{160}$ | ${ }_{115}^{115}$ | ${ }_{0}^{0.85}$ | 1 | ${ }_{0}^{0.85}$ | 退 0.18 | 0.08 | 0.85 0.50 .5472 | ${ }^{16,5939}$ | ${ }_{0}^{0.8}$ |  | 19.65488 | 2232411 | $\underset{\substack{360 \\ 350}}{ }$ |  | 763845 |
| ${ }^{30}$ | ${ }^{320}$ | ${ }_{160}$ | ${ }^{115}$ | ${ }_{0}^{0.85}$ | 1 | ${ }_{0}^{0.55}$ | $5_{0}^{0.18}$ |  | 0.930.0.00591 | 20.16133 |  | $0_{0.810 .08887}$ | 14.05458 | 24.1352 | 360 |  |  |
| ${ }_{4} 40$ | ${ }_{320}$ | ${ }_{160}$ | 115 | 0.85 | 1 | 0.55 |  |  |  |  |  | ${ }_{0}^{18.810 .9445}$ | 14.0548 | 24,9883 | ${ }_{360}$ |  |  |
| 51 | ${ }_{3}^{30}$ | 160 | 115 | 0.85 | 1 | 0.55 | 50 |  | 1.090 .815821 | 23.46182 |  | 0.81173898 | 11.05458 |  | 330 |  |  |
| $\bigcirc 6$ | 330 | 160 | 115 | 0.85 | + | 0.55 | 0.18 | 1.13 | 1.13.0.82269 | 2488827 | 0.8 | 0.812424093 | 11.0548 | 826.4887 | 360 |  | 100.965 |
| ${ }^{7}$ | ${ }^{32}$ | 1.60 | 115 | 0.85 | 1 | 0.55 | 0.18 | 1.17 | 1.170 .89897 |  | 0.8 | 0.8129 |  |  | 360 |  |  |
| 85 | 320 | 160 | 115 |  |  |  |  |  |  | 27.1458 |  |  |  | 27, 22887 |  |  |  |
| 96 | 320 | 160 | 115 | 0.85 | 1 | 0.85 | 0.8 |  | 1.260 .97672 | 281095 |  | 0.81 14.05488 | 11.05488 | 28.0916 | 360 |  | 55.56513 |

Epoxy Coating
(Sherwin williems)

APPENDIX

Exoansion Joinifa


| Expansion Joint Sizing |  |  |  |
| :--- | :---: | :---: | :---: |
| Loading Case | Water Park $\Delta$ (inch) | Hotel 5th Floor $\Delta$ (inch) | Total deflection (inch) |
| Case 1 | 0.7 | 0.66 | 1.36 |
| Case 2 | 1.51 | 0.51 | 2.02 |
| Case 3 | 0.4 | 1.07 | 1.47 |
| Cese 4 | 1.01 | 0.8 | 1.81 |
| Seismic | 1.06 | 0.66 | 1.72 |



